Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI
نویسندگان
چکیده
BACKGROUND Schizophrenia is a clinical syndrome, and its causes have not been well determined. The objective of this study was to investigate the alteration of brain functional connectivity between schizophrenia and healthy control, and present a practical solution for accurately identifying schizophrenia at single-subject level. METHODS 24 schizophrenia patients and 21 matched healthy subjects were recruited to undergo the resting-state functional magnetic resonance imaging (rs-fMRI) scanning. First, we constructed the brain network by calculating the Pearson correlation coefficient between each pair of the brain regions. Then, this study proposed a novel non-negative discriminant functional connectivity selection method, i.e. non-negative elastic-net based method (N2EN), to extract the alteration of brain functional connectivity between schizophrenia and healthy control. It ranks the significance of the connectivity with a uniform criterion by introducing the non-negative constraint. Finally, kernel discriminant analysis (KDA) is exploited to classify the subjects with the selected discriminant brain connectivity features. RESULTS The proposed method is applied into schizophrenia classification, and achieves the sensitivity, specificity and accuracy of 100, 90.48 and 95.56%, respectively. Our findings also indicate the alteration of functional network can be used as the biomarks for guiding the schizophrenia diagnosis. The regions of cuneus, superior frontal gyrus, medial, paracentral lobule, calcarine fissure, surrounding cortex, etc. are highly relevant to schizophrenia. CONCLUSIONS This study provides a method for accurately identifying schizophrenia, which outperforms several state-of-the-art methods, including conventional brain network classification, multi-threshold brain network based classification, frequent sub-graph based brain network classification and support vector machine. Our investigation suggested that the selected discriminant resting-state functional connectivities are meaningful features for classifying schizophrenia and healthy control.
منابع مشابه
طبقهبندی بیماری پارکینسون بر مبنای شاخصهای درون-ناحیهای و بین-ناحیهای شبکه حرکتی مغز با استفاده از دادگان fMRI حالت استراحت
Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movement. Recent studies on investigation of the brain function show that there are spontaneous fluctuations between regions at rest as resting state network affected in various disorders. In this paper, we used amplitude of low frequency fluctuation (ALFF) for the study of intra-r...
متن کاملResting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملDiscriminant analysis of functional connectivity patterns on Grassmann manifold
The functional brain networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive function and brain disorders. Rather than analyzing each network encoded by a spatial independent component separately, we propose a novel algorithm for discriminant analysis of functional brain networks jointly at an ind...
متن کاملDiscriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold
The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as...
متن کامل